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Abstract

Contreras Lopez, Maximiliano Enrique; Anteneodo de Porto, Ce-
lia Beatriz (Advisor). Complete Synchronization in Delayed 
Coupled Map Lattices. Rio de Janeiro, 2017. 75p. Dissertação 
de Mestrado – Departamento de Física, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

     We study complete synchronization in rings of logistic maps, using an 
advection-diffusion coupling scheme. The range of the interactions decays 
algebraically with distance between maps, sweeping from the totally connec-
ted to nearest-neighbor model, with synchronous or delayed lattice update. 
We studied the effects of delays and advection separately and combined. 
Although numerical studies were performed using the logistic map as local 
dynamics, some analytical results are more general. In the synchronous dy-
namics, synchronized states are chaotic, while the presence of delays allows 
synchronization in regular orbits. However, a strong contribution of delays 
in the updating can also produce chaotic synchronization. In all cases, longer 
interaction range favors synchronization, advection hinders synchronization 
and delays compensate the destructive effects of advection.

Keywords

Complex systems; Coupled map lattices; Complete synchronization; 
Advective diffusive coupling; Range of the interactions.
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Resumo

Contreras Lopez, Maximiliano Enrique; Anteneodo de Porto, Celia
Beatriz. Sincronização completa em redes de mapas acopla-
dos com retardo. Rio de Janeiro, 2017. 75p. Dissertação de Mes-
trado – Departamento de Física, Pontifícia Universidade Católica
do Rio de Janeiro.

   Estudamos sincronização completa em aneis de mapas logísticos, 
usando um esquema de acoplamento advectivo-difusivo. O alcance das 
interações diminui algebricamente com a distância entre mapas, varrendo 
do caso to-talmente conectado ao de primeiros vizinhos, com atualização 
sincronizada ou com retardo. Estudamos os efeitos do retardo e da 
advecção separada-mente e combinados. Embora os estudos numéricos 
tenham sido realizados utilizando o mapa logístico como dinâmica local, 
alguns resultados analí-ticos são mais gerais. Na dinâmica síncrona, os 
estados sincronizados são caóticos, enquanto a presença de atrasos 
permite a sincronização em órbi-tas regulares. No entanto, uma forte 
contribuição de retardos na atualização também pode produzir 
sincronização caótica. Em todos os casos, as inte-rações de longo alcance 
favorecem a sincronização, a advecção dificulta a sincronização, e os 
atrasos podem compensar os efeitos destrutivos da ad-vecção.

Palavras-chave

Sistemas complexos; Redes de mapas acoplados; Sincronização 
completa; Acoplamento advectivo-difusivo; Alcance das interações.
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1
Introduction

Chaos and synchronization are two words that seem to be in opposite
ends of our reality. However, the combination of these two concepts is at the
center of the emergence of patterns and structures in complex systems.

The earliest register of synchronization was made by Christiaan Huygens
in 1665. He observed that two pendulum clocks with a common support
progressively matched their oscillations until perfectly coincide [1]. Since then,
the synchronization phenomenon has been observed in several fields from
arrays of Josephson junctions to fireflies and brain oscillations [2–4]. We
will understand synchronization as [1]: “..adjustment of rhythms of oscillating
objects due to their weak interaction.”

In quantitative terms, we should measure that adjustment to estimate
the level of synchronization of any two objects. If this measurement coincides
through time, we can say that the objects are synchronized.

In this work we will focus on the synchronization of a specific type of
objects, chaotic maps. When two or more chaotic maps interact, either due to
coupling or forcing, they can become in synchrony. This phenomenon has been
largely studied and depending on the type of interaction between the systems,
unidirectional or bidirectional, the type of synchronization can be classified as:
complete, phase, lag, generalized, intermittent lag, imperfect phase and almost
synchronization. Among those, we are interested in complete synchronization
(CS). An extensive review of synchronization of chaotic systems and types of
synchronizations can be found in [5].

In order to illustrate complete synchronization, let us imagine that we
are measuring a certain feature x of each element of a given dynamical system
with a frequency of one time unit. So, for each time step, we plot the value of
x of each element of the system.
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Figure 1.1: Illustrative uncoupled elements of a system.

If the coupling is too weak, each system will follow its own dynamics as
in Figure 1.1. As we change parameters of the system, the collective behavior
can change.
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1.2(a): In-phase synchronization
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0.6
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x

1.2(b): Anti-phase synchronization

Figure 1.2: Two types of phase synchronization.

Figure 1.2 shows two types of phase synchronization for the same system.
In (a), the elements do not have the same value or state in each measurement,
but they have the same orientation. On the contrary, in (b) the elements
are in opposite phases. Both plots have as a common characteristic that
they are periodic. Nevertheless, that is not a prerequisite for synchronization.
Synchronization does not require periodic orbits. In fact we will see that chaotic
synchronized orbits can also occur.

Figure 1.3 shows the same elements but completely synchronized. All
the elements are doing exactly the same at the same time. This generates
the superposition of individual trajectories. Mathematically, if we label the N
elements of the system, i = 1, . . . , N , the CS state is defined as x1(t) = x2(t) =
· · · = xN(t), [6, 7].
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Figure 1.3: Completely synchronized state.

A standard model to study the synchronization of chaotic systems is a
Coupled Map Lattice (CML) [8], a regular array whose elements are maps.
A CML allows to study spatiotemporal patterns: periodic, quasi periodic,
intermittent, chaotic, synchronized, chimeras, traveling and frozen patterns
[9, 10]. Then, the effects of the internal parameters of the local map, as well
as of different types of interactions can be investigated.

The most extensively studied CML is the 1-dimensional lattice with
periodic boundary conditions (that is, a ring). Although there are some studies
that include intermediate ranges [11, 12], most studies focus on either nearest-
neighbors or global interactions [13–15]. Of special interest are interactions
that decay with the distance r, between maps in the lattice nodes, as 1/rα,
with α ≥ 0. This functional form allows to scan continuously the range of
interactions between the extreme cases.

Regarding the type of coupling, traditionally the one considered is
diffusive (symmetric), as will be defined in Chapter 2. The incorporation
of advection (asymmetric coupling) in this type of model is not frequent.
Nonetheless, in the series [16–19] the advective-diffusive model for nearest
neighbors is obtained from the continous differential equation. For this model,
pattern formation is studied. To our knowledge, the globally coupled or
long-range interacting advective-diffusive CML has not been studied in the
literature.

Another traditional feature in CML is the use of synchronous update
schemes, in contrast with the introduction of time delays, to account for finite
propagation times in information transmission [20, 21].

The present work is based on the methodology and the findings in [20, 21],
extending them to the advective-diffusive model, with and without delay. Our
aim is to incorporate all these features into one CML and explore the mixed
effect.
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Chapter 1. Introduction 17

The remainder of this dissertation is organized as follows.

In Chapter 2 we introduce the mathematical models that describe the
couplings, purely diffusive and advective-diffusive, and the update schemes,
synchronous and delayed. In Chapter 3 we present the analytical results for
each model. In Chapter 4 the results from the dynamical simulations for each
model are presented and compared with the corresponding analytical results
from Chapter 3. Finally, in Chapter 5, we summarize the obtained results and
their implications.
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2
The Models

In this chapter we define all the models used in the present work. We start
with the most general case, the Delayed Advective Diffusive (DAD) scheme,
explaining the role of each variable and parameter. Then the other models are
obtained as particular cases.

2.1
Delayed Advective Diffusive Model (DAD)

A Coupled Map Lattice, or CML, is a dynamical system with discrete
time, discrete space and continuous state variables [8]. In simple terms, it
is an arrange of nodes or elements in a, usually but not necessarily, regular
configuration (discrete space). The temporal evolution of each element occurs
in regular time steps (discrete time) and is given by a map (with continuous
states). If these nodes are connected or coupled, then they can interact with
each other.

i+3

i+2

i+1

i

i-1

i-2

i-3

Figure 2.1: Small lattice example. The ring has periodic boundaries.

For a lattice of size N , we can label each node as in Figure 2.1. So at
time t ∈ Z+

0 , we can define the state of the i-th node as xit. If the maps are
uncoupled, each map is defined by a function f that gives the rule to evolve
from any time to the following

xit+1 = f(xit). (2-1)

DBD
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The next state of the system, at time t+1, is represented by the N -dimensional
vector xit+1. When the maps interact, coupling terms are added into equation
2-1.

Let us call the global state of the lattice xt = (x1
t , x

2
t , . . . , x

N
t ). The

previous states of the CML are given by the collection {xt−1, ...,x0}, where x0

is an arbitrary initial random state and xt is the current state of the system.
The rule to find the next state of the system can depend on the current state,
previous states and a set of parameters ζ,

xt+1 = F(xt,xt−1, . . . ,x0, ζ). (2-2)
If this relation can be written only using xt and ζ, as

xt+1 = F(xt, ζ), (2-3)
we consider that the system has no delay or the update scheme is synchronous.
When the equation includes not only xt but previous states, as in (2-2) we will
say that the update scheme has delay or is delayed. The inclusion of delay
makes sense when the system is large because the information between distant
nodes should take finite time to travel.

Furthermore, distant elements should have smaller mutual influence,
compared with those located in the vicinity, called nearest neighbors. In order
to model this last phenomenon, we define the distance and a range parameter.
The distance between the i-th and j-th elements in the lattice, ri,j, is defined
as the number of edges in the shortest path between these two nodes. This can
be written as

ri,j = mink |i− j + kN | , (2-4)
where k is the natural number that minimizes equation (2-4). In the example
of Figure 2.1, seven elements have been labeled from i − 3 to i + 3, where i
can be any element (i = 1 . . . N). The distances are, for instance, ri,i−2 = 2,
ri,i+1 = 1, ri,i+3 = 3.

To control the range of the interactions, we introduce the range parameter
α ∈ R+

0 . The influence Ki,j of the element j over the element i will be
proportional to the inverse of the distance to power α, i.e.,

Ki,j ∝
1
rαi,j

. (2-5)

Using the parameter α, we can select the range from nearest neighbors when
α → ∞, to global when α → 0. In this limit, all the elements influence each
other equally regardless of the distance ri,j between them. This can be seen as
a totally connected graph, where each node is directly connected with all the
others, as represented in Figure 2.2.
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Figure 2.2: Equivalent totally connected ring when α = 0.

For the present study we introduce delay using an intermediate state
variable x̂, defined as

x̂t = βxt−1 + (1− β)xt. (2-6)
The delay parameter β ∈ [0, 1], controls the contribution of a one-

time delay, going from synchronous update when β = 0, to a purely delayed
dynamics when β = 1 [20, 21].

As local dynamics, we use the logistic map f(x) = 4x(1 − x), with
x ∈ [0, 1]. This is a well known and extensively studied map that exhibits
chaotic behavior [22–24]. N of these elements are arranged in a ring (one-
dimensional lattice with periodic boundary conditions) as depicted in the
example of Figure 2.1.

We consider two types of coupling schemes: diffusive and advective. We
define the diffusive scheme as the combined (symmetric) effect of those nodes
i+ j and i− j over i as

Si,j ∝
f(xi+j) + f(xi−j)

rαi,j
. (2-7)

The advective (asymmetric) scheme is given by the differential effect of
the same nodes as

Vi,j ∝
f(xi+j)− f(xi−j)

rαi,j
. (2-8)

To control the strength of couplings, we introduce two parameters: the
coupling or diffusive parameter ε and the advective parameter γ. These two
parameters can be connected with physical quantities through the discretiza-
tion of the one-dimensional continuous advective-diffusive equation, as shown
in [19].
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Now, considering all the elements of the lattice, we can state the Delayed
Advective Diffusive model adding up the influence of diffusive and advective
terms of all theN−1 elements over the node i, together with its local dynamics,

xit+1 = (1− ε)f(xit) + ε

η

M∑
j=1

f(x̂i+jt ) + f(x̂i−jt )
rαi,j

+ γ

η

M∑
j=1

f(x̂i+jt )− f(x̂i−jt )
rαi,j

. (2-9)

The first term in equation (2-9) represents the contribution of the local
dynamics. If we set ε and γ both zero, the system would consist in a set of N
uncoupled chaotic logistic maps. The second term is the diffusive term. The
relative strength of this term is controlled by the parameter ε. The third term
corresponds to the advective term. In this case, the strength is controlled by
the parameter γ whose values are restricted to the range γ ∈ [−ε, ε], as shown
in [19]. This restriction connects the advective parameter with the diffusive
one.

There are two more elements that need to be defined in equation (2-9):
η and M . The parameter η is a normalization factor defined as

η(α) = 2
M∑
j=1

1
rαi,j

. (2-10)

Using the fact that the geometry for the model is symmetric (a ring), the
sum over all the elements can be done defining M = N/2, when N is even and
M = (N − 1)/2 when N is odd.

Now, we will look at some particular cases of the model in (2-9).

2.2
Synchronous Advective Diffusive Model (SAD)

If we set β = 0 in equation (2-9) we get that x̂t = xt, and therefore

xit+1 = (1−ε)f(xit)+ ε

η

M∑
j=1

f(xi+jt ) + f(xi−jt )
rαi,j

+ γ

η

M∑
j=1

f(xi+jt )− f(xi−jt )
rαi,j

. (2-11)

In this model the next state of the system, xt+1, depends only on the current
state of the system xt, and the set of parameters. The update scheme is
synchronous. The interaction remains advective (γ) and diffusive (ε).
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2.3
Delayed Purely Diffusive Model (DPD)

Starting with equation (2-9), if we set γ = 0,

xit+1 = (1− ε)f(xit) + ε

η

M∑
j=1

f(x̂i+jt ) + f(x̂i−jt )
rαi,j

. (2-12)

In this case, we retain the delay through x̂t, defined in equation 2-6, but exclude
the advective term. The interaction is only diffusive.

2.4
Synchronous Purely Diffusive Model (SPD)

The simplest model is obtained from equation (2-9) setting both, β and
γ equal to zero simultaneously.

xit+1 = (1− ε)f(xit) + ε

η

M∑
j=1

f(xi+jt ) + f(xi−jt )
rαi,j

. (2-13)

It does not contain delay nor advection.
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3
Analytical results

In this chapter we analyze the emergence and stability of completely
synchronized states (CS) in CMLs. Complete synchronization occurs when all
the elements of the lattice adopt the same value, let us call it x?t , for all times
t, after a transient time t0. That is x1

t = x2
t = . . . = xNt = x?t , for all t > t0.

In order to determine the (linear) stability of these states, we analyze the
tangent dynamics, that is the dynamics of small deviations.

We begin with the simplest CML, using the Synchronous Purely Diffusive
(SPD) scheme, and from there we build results up to the Delayed Advective
Diffusive (DAD) scheme. This is intended to give a comprehensive and incre-
mental construction of the results.

3.1
Synchronous Purely Diffusive (SPD)

Governed by the SPD scheme, the coupled maps evolve according to

xit+1 = (1− ε)f(xit) + ε

η

M∑
j=1

f(xi+jt ) + f(xi−jt )
rαi,j

. (3-1)

If the system were in a CS state, where all the maps are in the state x?t ,
then the system of equations (3-1) reduces to the single equation

x?t+1 = f(x?t ), (3-2)
which is the dynamics of the uncoupled map. In particular, the lattice can
synchronize following a chaotic trajectory.

The small deviations around this chaotic CS state, neglecting terms
greater than O(1), are given by

δxit+1 =
[
(1− ε)δij + ε

η
Aij

]
f ′(x?t )δx

j
t , (3-3)

where Aij are the elements of matrix A given by Aij = (1 − δij)/rαij. The
evolution of displacements can be written in compact form as

δxt+1 = FDt δxt, (3-4)
where

δxt = (δx1
t , δx

2
t , . . . , δx

N
t )T (3-5)
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and

FDt =
[
(1− ε)1 + ε

η
A
]
f ′(x?t ). (3-6)

Equation (3-5) shows that FDt depends on time t through f ′(x?t ) only and also,
that tangent dynamics is ruled by the eigenvalues of the matrix FD

t which are
directly related to those of A.

The structure of A represents the diffusive coupling in a ring type lattice
of size N .

A(α) =



0 1
rα1,2

1
rα1,3

. . . 1
rα1,N

1
rα2,1

0 1
rα2,3

. . . 1
rα2,N

1
rα3,1

1
rα3,2

0 . . . 1
rα3,N... ... ... ... ...

1
rαN,1

1
rαN,2

1
rαN,3

. . . 0


,

recalling that the distances were defined in equation (2-4) through ri,j =
mink |i− j + kN |.

Three features stand out: this matrix is circulant, it is symmetric and,
for fixed size of the lattice, the elements Ai,j depend on the range parameter
α only. We explore this last point changing the value of α and visualizing the
elements of A as a heatmap for a ring of size N = 201.
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3.1(a): At α = 0.1, all Ai,j 6=i > 0.6
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3.1(b): As α = 3, j = i± 1 predominate

Figure 3.1: Heatmaps for the elements of Ai,j.

The comparison between Figure 3.1(a) and 3.1(b) shows that the ele-
ments of A decrease with α. In (b), when α = 3, almost all the elements
outside the diagonal are zero. To see in detail how the elements of A change
with α, we use the fact that A is a circulant matrix, so any row is a one-element
shift of the preceding row. Then, we can analyze just one row.
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In Figure 3.2 all the elements of one row of the matrix A, A1,j, are plotted
for different values of the parameter α. Increasing α moves the curves down
towards zero, with the exception of the borders j = 1, N . Conversely, the
contribution of all elements grows as α decreases. In the limit α = 0, all the
elements of A outside the diagonal are equal to 1. This is represented by the
red dotted curve.
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Figure 3.2: The dependence of A1,j with α.

Since A is circulant, it can be diagonalized using the Fourier matrix U ,
as A/η = UΨU∗ [6]. The elements of the diagonal matrix Ψ are

ψk =
N−1∑
m=0

ame
−2πimk

N , (3-7)

where am is related with the elements of A as

am = A1,m+1

η
. (3-8)

and η is the normalization factor defined in the previous chapter. The index k
enumerates the elements of the diagonal matrix Ψ.

In the case of odd N , M = (N − 1)/2 and the element am is

am =


0 m = 0

1
ηmα

m ∈ {1, . . . , N−1
2 }

1
η(N−m)α m ∈ {N+1

2 , . . . , N − 1}.

Defining Wk ≡ e
−2πik
N , we can write (3-7) as

ψk =
M∑
m=1

1
ηmα

Wm
k +

N−1∑
m=M+1

1
η(N −m)αW

m
k . (3-9)

Through the change of variables m = N −m′ in the second term of (3-9), we
get

N−1∑
m=M+1

1
η(N −m)αW

m
k =

M∑
m′=1

1
ηm′α

WN−m′
k . (3-10)
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From this last expression, we notice that WN
k = 1. Putting it back in (3-9), we

have

ψk = 1
η

M∑
m=1

Wm
k +W−m

k

mα
= 2
η

M∑
m=1

cos(2πkm/N)
mα

. (3-11)

This is the expression for the eigenvalues of Ψ when N is odd. It is clear
that |ψk| ≤ 1, for all k ∈ 0, . . . , N − 1.
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Figure 3.3: Eigenvalues of Ψ as function of α.

Illustrative values of ψk for α ∈ [0, 10] and k = 0, . . . , N − 1, are shown
in Figure 3.3. The red line and the dotted blue line correspond to the maximal
and the minimal values for ψ, respectively. This is consistent with the results
in Figure 3.2 where k = 0 and k = N−1 are the maximal and second maximal
values, while k = (N − 1)/2 corresponds to the minimum.

In the case of even N , the elements are

am =



0 m = 0
1

ηmα
m ∈ {1, . . . , N2 − 1}

2
ηmα

m = N
2

1
η(N−m)α m ∈ {N2 + 1, . . . , N − 1}.

Using the same procedure, we can write the eigenvalues for this case as

ψk = 2
η

M∑
m=1

cos(2πkm/N)
mα

− (−1)k
η(N/2)α . (3-12)

Equations 3-11 and 3-12 are general results for the diffusive interaction
in a ring type lattice. The last term in equation 3-12 becomes negligible when
N is large enough.

To calculate the Lyapunov exponents of N-dimensional systems, with
N ≥ 2, we use the usual definition [25]

λ = lim
n→∞

1
n

ln
(yn
y0

)
, (3-13)
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where y ∈ RN is the displacement from the original orbit.
In CS states, the Lyapunov spectrum (LS) can be extracted from the

evolution of initial tangent vectors. The product of Jacobian matrices at
successive points in the trajectory [26],

δxt+1 = FDt δxt = FDt FDt−1 . . .FD1 FD0 δx0. (3-14)
Using this last equation, together with equation (3-5), and the eigenvalues of
the matrix A, we can get the Lyapunov spectrum for completely synchronized
states, namely,

λ∗k = λU + ln |(1− ε) + εψk| , (3-15)
with k = 0, 1, . . . , N − 1, and where λ0 = λU is the Lyapunov exponent
of the local map. The largest eigenvalue λU is associated to the eigenvector
(1, 1, . . . , 1) which corresponds to the completely synchronized manifold, for
any α. Meanwhile, the transverse stability comes from the negativity of the
remaining (N − 1) exponents [6]. This means that for k 6= 0,

|(1− ε) + εψk| < e−λU . (3-16)
From Figure 3.3, we use the fact that the curve ψ is maximal (ψmax),

when k = N − 1 (out of the case k = 0, that gives the longitudinal stability),
and minimal (ψmin), when k = (N − 1)/2. Moreover, for the logistic map, we
have λU = ln 2. As the inequality must hold in all cases in between, then for ε
we obtain

εmin = 1− 1/2
1− ψmax

≤ ε ≤ 1 + 1/2
1− ψmin

= εmax. (3-17)

This is the range for which complete synchronization is stable.
For instance, when α = 0, ψmax = ψmin = 0, therefore 1/2 ≤ ε ≤ 3/2,

that is 1/2 ≤ ε ≤ 1. When α → ∞, ψmax = 1 and ψmin = −1, hence there is
not allowed range of ε.

Figure 3.4 shows the complete synchronization frontier. Below the curve
there is a complete synchronization region (CSR), where CS states are chaotic.
Notice that sufficiently long-range is required (α < 0.75, for ε ≤ 1).
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CS Frontier for SPD
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Figure 3.4: Complete synchronization frontier.

3.2
Synchronous Advective Diffusive (SAD)

The SAD scheme has an additional term, with respect to the SPD case,
namely the advective (asymmetric) one, such that

xit+1 = (1−ε)f(xit)+ ε

η

M∑
j=1

f(xi+jt ) + f(xi−jt )
rαi,j

+ γ

η

M∑
j=1

f(xi+jt )− f(xi−jt )
rαi,j

. (3-18)

Also in this case, in CS states equation (3-2) holds, therefore, it is worth
to analyze the stability of chaotic CS states.

Again, the small deviations around a CS state, neglecting terms greater
than O(1), are given by

δxit+1 =
[
(1− ε)δij + ε

η
Aij + γ

η
Bij

]
f
′(x?t )δx

j
t , (3-19)

where Bij are elements of the matrix B. The elements of the first row of B are
given by

B1j =

 (1− δ1j)/rα1j j ≤ (N − 1)/2
−(1− δ1j)/rα1j j > (N − 1)/2.

The remaining rows can be obtained by shifting this first one because the
matrix B is circulant. The evolution of displacements can be written in
compact form as

δxt+1 = FAt δxt, (3-20)
where

δxt = (δx1
t , δx

2
t , . . . , δx

N
t )T (3-21)

and
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FAt =
[
(1− ε)1 + ε

η
A+ γ

η
B
]
f ′(x?t ). (3-22)

Equation (3-22) shows that FAt depends on time t through f ′(x?t ) and
also, that the tangent dynamics is ruled by the eigenvalues of the matrix FAt
which are directly related to those of A and B. We already analyzed those of
A, so we focus on the eigenvalues of matrix B, that represents the advective
coupling in a ring type lattice, and is given by

B(α) =



0 1
rα1,2

. . . −1
rα1,N−1

−1
rα1,N

−1
rα2,1

0 1
rα2,3

. . . −1
rα2,N

−1
rα3,2

−1
rα3,2

0 . . . −1
rα3,N... ... ... ... ...

1
rαN,1

1
rαN,2

1
rαN,3

. . . 0


.

There are important differences between the matrices A and B. First,
elements of Bi,j ∈ [−1, 1] while Ai,j ∈ [0, 1]. Second, the matrix A is symmetric,
AT = A, and B is antisymmetric, BT = −B. They have in common the fact
that α plays the same role: increasing α reduces the absolute value of the
elements outside the three main diagonals. This can be seen in the pictorial
representation done in Figure 3.5.
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3.5(a): Positive and negative regions
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3.5(b): Bi,j(3) 6= 0 close to the diagonal

Figure 3.5: Heatmaps for the elements of the matrix B.

The matrix B is also circulant, similarly to A, and can be diagonalized
in the same Fourier basis, as B/η = UΩU∗, where the diagonal elements of Ω
are given by

−iωk =
N−1∑
m=0

bme
−2πimk

N , (3-23)

with
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bm = B1,m+1

η
. (3-24)

and the index k enumerates the elements of the diagonal matrix Ω.
When N is odd, then M = (N − 1)/2 and,

bm =


0 m = 0

1
ηmα

m ∈ {1, . . . , N−1
2 }

−1
η(N−m)α m ∈ {N+1

2 , . . . , N − 1}.

Replacing bm in (3-23),
M∑
m=1

1
ηmα

Wm
k +

N−1∑
m=M+1

−1
η(N −m)αW

m
k . (3-25)

Following the same procedure applied to A, we get

1
η

M∑
m=1

Wm
k −W−m

k

mα
= −2i

η

M∑
m=1

sin(2πkm/N)
mα

= −iωk, (3-26)

where

ωk = 2
η

M∑
m=1

sin(2πkm/N)
mα

. (3-27)

When N is even, the elements of B are

bm =



0 m = 0
1

ηmα
m ∈ {1, . . . , N2 − 1}

0 m = N
2

−1
η(N−m)α m ∈ {N2 + 1, . . . , N − 1}.

The only difference between the two cases is that for N even, when
m = N/2, bm = 0. Then, the eigenvalues are also −iωk.
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Figure 3.6: Relation between B1,j and α.

Figure 3.6 shows that the extreme values for ωk occur for different values of k
depending on α.
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Again, in CS states, the Lyapunov spectrum (LS) can be extracted
from the evolution of initial tangent vectors given by the product of Jacobian
matrices at successive points in the trajectory,

δxt+1 = FAt δxt = FAt FAt−1 . . .FA1 FA0 δx0. (3-28)
Using this last equation, together with equation (3-22), and the eigenvalues
of the matrices A and B, we can get the Lyapunov spectrum for completely
synchronized states, namely,

λ∗k = λU + ln |(1− ε) + εψk − iγωk| , (3-29)
with k = 0, . . . , N − 1, and where λU is the Lyapunov exponent of the local
map. The eigenvalues ωk correspond to the advective coupling. In Figure 3.7,
we can see that maximal and minimal values of ω depend on k and α. This
means that we can not use a single ωk as the maximal or the minimal value.
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Figure 3.7: ωk does not have a unique maximum for all α.

When k = 0, we have ψk = 1 and ωk = 0, therefore λ∗k = λU . The
eigenvalues for k = 0 are associated to the eigenvector (1, 1, . . . , 1) which
corresponds to the completely synchronized manifold, for any α. Meanwhile,
the transverse stability comes from the negativity of the remaining (N − 1)
exponents. This means that for k 6= 0,

|(1− ε) + εψk − iγωk| < e−λU . (3-30)
that for the logistic map (λU = ln 2) becomes,[

(1− ε) + εψk
]2

+
[
γωk

]2
≤ 1

4 . (3-31)
For γ = 0, we recover the inequality of the SPD model, as expected.
For given γ, we look for couples (α, ε) such that ψk = ψ(k, α) and

ωk = ω(k, α) allow to satisfy simultaneously the inequality (3-31) and the
restriction −ε ≤ γ ≤ ε, for all k ∈ 0, . . . , N − 1. If a couple verifies
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these conditions, we mark it as a complete synchronization point (CS point).
Scanning through the space of parameters, it is possible to find the set of CS
points. Finally, we plot the frontier for each given value of γ, in the (ε, α) space.

Theoretical frontier
γ = 0.0
γ = 0.5
γ = 0.7

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

Figure 3.8: CS theoretical frontiers for different values of γ. The CS states, in
each case, are located below the corresponding curve.

Figure 3.8 shows three examples, γ = 0, 0.5 and 0.7 of the theoretical
frontier. The figure suggests that the advection plays a role that hampers CS
states, shrinking the CS domain.

We also can find the theoretical limits for complete synchronization in
the SAD model. Equation 3-31, defining η = εψ, ρ = γω and a = 1− ε, can be
transformed into

(η + a)2 + ρ2 ≤
(1

2

)2
. (3-32)

Geometrically, this corresponds to a circle. This implies |ρ| ≤ 1/2, so

γ |ω| ≤ 1
2 . (3-33)

From Figure 3.7, for α = 0, we observe the maximal value |ωN−1| ≈ 0.63.
Then, equation (3-33) leads to the maximal value of γ ' 0.79 to observe
synchronization, in accord with the results shown in Fig. 3.8.

3.3
Delayed Purely Diffusive (DPD)

We saw in (2-12) that the scheme with delay and diffusive coupling leads
to the CML

xit+1 = (1− ε)f(xit) + ε

η

M∑
j=1

f(x̂i+jt ) + f(x̂i−jt )
rαi,j

, (3-34)

where x̂it was defined in Chapter 2 as

x̂it = βxit−1 + (1− β)xit. (3-35)
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In this case, due to delay, one can not obtain an equation like (3-2), then
chaotic synchronization is unlikely. But still, we can consider regular orbits.
For instance, if CS occurs at a fixed point, x?, such that

xit = xit−1 = x? (3-36)
and

x̂it = βxit−1 + (1− β)xit = x?. (3-37)
Then, the system of equations (3-34) becomes

x̂? = f(x?), (3-38)
which means that x? needs to be a fixed point of the local dynamics.

Now, when linearizing equation (3-34) around the fixed point [21], we get

δxit+1 =
[
(1− ε)δxit + ε

η

M∑
j=1

A(r)
(
δx̂i+jt + δx̂i−jt

)]
f ′(x?). (3-39)

The system of equations in (3-39) can be written in the form

δx̃t+1 = F0δx̃t, (3-40)
by defining the 2N -dimensional tangent vector

δx̃t = (δxt, δxt−1)T , (3-41)
and the 2N × 2N time independent matrix,

F 0 =
f ′(x?)[(1− ε)1 + (1− β)εA] f ′(x?)βεA

1 0

 (3-42)

If we define H = [(1− ε)1 + (1− β)εA] and G = βεA, we can rewrite F 0

as

F 0 =
Hf ′(x?) Gf ′(x?)

1 0

 .
We can find the eigenvalues λ of this matrix solving the equation

det(F 0 − λ1) = 0. This implies that

−λ1
[
Hf ′(x?)− λ1

]
− Gf ′(x?) = 0, (3-43)

or

λ21− λHf ′(x?)− Gf ′(x?) = 0. (3-44)
On one hand, the two matrices, H and G depend on A. We recall that A

can be diagonalized in the Fourier base, therefore from (3-44)
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λ21− f ′(x?)λ
[
(1− ε) + ε(1− β)Ψ

]
− f ′(x?)εβΨ = 0. (3-45)

Now, for each eigenvalue k = 0, . . . , N − 1, the equation becomes

λ2 − f ′(x?)λ
[
(1− ε) + ε(1− β)ψk

]
− f ′(x?)εβψk = 0. (3-46)

This is the characteristic equation for λ. For each k we have two values of λ.
On the other hand, the local map f has two fixed points: {0, 3/4}. Both

are unstable in the uncoupled map, that is |f ′(x?)| > 1, leading to chaos.
However, their stability can change when the maps are coupled.

For x? = 0, f ′(x? = 0) = 4. Then (3-46) becomes

λ2 = −4λ
[
(1− ε) + ε(1− β)ψk

]
− 4εβψk = 0. (3-47)

It is easy to show, using the eigenvalues with k = 0, that this fixed point
remains longitudinally unstable.

For the second fixed point, f ′(x? = 3/4) = −2. Then (3-46) becomes

λ2 = 2λ
[
(1− ε) + ε(1− β)ψk

]
+ 2εβψk = 0. (3-48)

Using ψ0 = ψmax = 1, equation (3-48) becomes

λ2 + 2λ
[
1− εβ

]
+ 2εβ = 0. (3-49)

Defining ϕ ≡ εβ, the eigenvalues are

λ± = −
[
1− ϕ

]
±
√[

1− ϕ
]2
− 2ϕ. (3-50)

If we define the discriminant ∆ =
[
1 − ϕ

]2
− 2ϕ, we have two cases: ∆ ≥ 0

and ∆ < 0.
When ∆ < 0, we have complex roots. In that case, |λ±| < 1 becomes

εβ = ϕ ≤ 1/2. When ∆ ≥ 0, we have real roots. In that case, from |λ±| < 1
we get εβ = ϕ ≥ 1/4.

Putting these results together

1
4 ≤ βε ≤ 1

2 . (3-51)
In this interval the fixed point is longitudinally stable, along the synchroniza-
tion subspace, differently to what happens with the other fixed point.

From the fact that ε ∈ [0, 1], equation (3-51) implies that when we change
β, the interval in ε for stability changes too. It is larger when β = 1/2 and
shorter for other values of β. For instance when β = 1/4, ε = 1. If β = 1/2,
1/2 ≤ ε ≤ 1. Now, when β = 3/4, 1/3 ≤ ε ≤ 2/3. And if β = 7/8,
2/7 ≤ ε ≤ 4/7.

For other eigenvalues, from equation (3-46),
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λ± = −
[
1− ε+ ε(1− β)ψ

]
±
√[

1− ε+ ε(1− β)ψ
]2
− 2εβψ. (3-52)

Defining Γ ≡
[
1− ε + ε(1− β)ψ

]
and the discriminant ∆ ≡ Γ2 − 2εβψ,

the roots are,

λ± = −Γ±
√

∆. (3-53)
Since Γ2 ≥ 0, and ψmin < 0, then ∆ ≥ 0. So, for λ+

−Γ +
√

Γ2 − 2εβψmin < 1, (3-54)
then

ε ≤ 3
2(1− ψmin) . (3-55)

For λ−, we obtain

Γ +
√

Γ2 − 2εβψmin < 1, (3-56)
from where

1
2[1− (1− 2β)ψmin] ≤ ε, (3-57)

putting together these two inequalities,

1
2[1− (1− 2β)ψmin] ≤ ε ≤ 3

2(1− ψmin) . (3-58)

This result gives the transversal stability boundaries for the complete synchro-
nization domain of period 1.

From equation (3-46) the stability conditions arise: longitudinal (3-51)
and transversal (3-58). Both must hold for the existence of CS states in a fixed
point. These results are coherent with those in [20, 21]. Now we can compare
the results obtained for the two purely diffusive schemes (synchronous and
delayed).
In Figure 3.9 theoretical results for the purely diffusive scheme, synchronous
and delayed are shown. The small region enclosed by the continuous line, SDS
case, contains only chaotic CS states as was shown in section 3.1. The CSR
for the DPD model is enclosed by the active side of the inequalities found in
equations (3-51) and (3-58). The longitudinal stability, blue dotted line, sets
the right boundary of the CSR. The transversal stability, green dotted line,
sets the left boundary. Enclosed between these two curves, we have completely
synchronizes states of period 1, for long range and short range of interactions.
This illustrates the profound differences that emerge with the inclusion of delay.
For the DPD model, the enclosed region is a subset of the CSR, including only
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Figure 3.9: Theoretical CSR for the DPD, with β = 0.6, and SPD models. The
red (continuous) line indicates the frontier for the CSR of the synchronous
model. The colored region below the curve corresponds to CS states for the
SPD model. The green and blue lines (dotted) enclose the CSR for the delayed
model, that includes short-range interactions, shown in the upper panel.

orbits of period 1. The simulations will give us the complete CSR that will
include, as we will see, other types of orbits.

3.4
Delayed Advective Diffusive (DAD)

In the scheme with delay, diffusion and advection, the evolution of states
is given by

xit+1 = (1−ε)f(xit)+ ε

η

M∑
j=1

f(x̂i+jt ) + f(x̂i−jt )
rαi,j

+ γ

η

M∑
j=1

f(x̂i+jt )− f(x̂i−jt )
rαi,j

. (3-59)

In this case synchronization around a fixed point x∗, as in the DPD
model, is also possible. Following the same procedure as before to calculate
deviations around the fixed point, we get for the diffusive term

δD = ε(1− β)Af ′(x∗)δxt + εβAf ′(x∗)δxt−1, (3-60)
and for the advective term

δV = γ(1− β)Bf ′(x∗)δxt + γβBf ′(x∗)δxt−1. (3-61)
where we use the results from the previous sections. So, the evolution of
displacements in the vicinity of the fixed point x? becomes
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δ
[
xt+1

]
=
[
(1−ε)1+ε(1−β)A+γ(1−β)B

]
f ′(x∗)δxt+

[
εβA+γβB

]
f ′(x∗)δxt−1.

(3-62)
Now we define

H ≡ H(N, α, ε, β, γ) = (1− ε)1 + ε(1− β)A+ γ(1− β)B, (3-63)

and

G ≡ G(N, α, ε, β, γ) = εβA+ γβB, (3-64)
so equation (3-62) turns into

δ
[
xt+1

]
= Hf ′(x∗)δxt + Gf ′(x∗)δxt−1, (3-65)

that in matrix form is
δxt+1

δxt

 =
Hf ′ Gf ′

1 0

  δxt

δxt−1

 .
The characteristic equation for this system, when λ 6= 0, is

λ21 + 2λH + 2G = 0, (3-66)
that in the Fourier base becomes

λ2 + 2λ
[
(1− ε) + ε(1− β)Ψ− iγ(1− β)Ω

]
+ 2

[
εβΨ− iγβΩ

]
= 0, (3-67)

and for each k

λ2 + 2λ
[
(1− ε) + ε(1− β)ψk − iγ(1− β)ωk

]
+ 2

[
εβψk − iγβωk

]
= 0. (3-68)

In equation (3-68), whenever the advection parameter γ appears, it is
accompanied by the delay parameter β. Then, both contributions can not be
separated. One of these terms is proportional to (1− β) and the other β.

Defining εφ ≡ εψ − iγω the equation becomes,

λ2 + 2λ
[
(1− ε) + ε(1− β)φ

]
+ 2

[
εβφ

]
= 0, (3-69)

which is very similar to the characteristic equation for the model without
advection. So, if ε � γ, this model converges to the previous one. In other
cases, to find analytical solutions is not simple and has to be done for specific
states.

For fixed values of β and γ, we will look for couples of values (α, ε) that
make the corresponding two values of λ in (3-69) holds |λ| ≤ 1. If a state fulfills
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3.10(a): CS states for β = 0.5 and γ = 0.0.
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3.10(b): CS states for β = 0.5 and γ = 0.6.

Figure 3.10: CSR for two illustrative cases of the delayed scheme, with and
without advection.

both requirements, we mark the state as CS. Moreover, in the DAD model we
also have to require the inequality ε ≥ γ.

In Figure 3.10, the comparison between (a) and (b) shows that advection
primarily destroys CS states reducing the CS domain, due to the restriction
ε ≥ γ. Second, for a fixed β, the advection destroys the CS states, as can be
seen in the upper right corner of Figure 3.10(b). For fixed γ the delay have the
same effect as in the DPD model.
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4
Numerical Results

4.1
Simulations setup

For each scheme, numerical simulations were performed. Starting from
random initial conditions [27], and a fixed set of values of the parameters
(α, ε, β, γ), we let the system evolve during a transient time t0 = 104. After
this time, we record the state of the system during the next 200 iterations.
The size of the system is N = 201 for all results shown.

Regarding the values of the parameters, we varied α ∈ [0, 3] with a step
of ∆α = 0.1, ε ∈ [0, 1] with ∆ε = 0.01, γ ∈ [0, 1] with step of ∆γ = 0.1 and
β ∈ [0, 1] with step of ∆β = 0.1. Other specific values of parameters were also
considered.

4.2
Collective metrics

As in [20, 21], we calculate collective metrics to measure the global
behavior of the system. We consider the average state,

ht = 1
N

N∑
i=1

xit, (4-1)

and its standard deviation,

σt =

√√√√ 1
N

N∑
i=1

(xit − ht)2. (4-2)

Notice that for a completely synchronized state, as defined before, it
should be σ = 0. In practical terms we consider CS when σ < 10−14. Also, as
in [20, 21], we calculate the largest Lyapunov exponent λt using the Benettin
algorithm [28].

DBD
PUC-Rio - Certificação Digital Nº 1521979/CA



Chapter 4. Numerical Results 40

4.3
Results for the Synchronous Purely Diffusive model

Following the procedure described above, we calculate h, σ and λ for the
SPD model.
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Collective metrics for α = 0
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4.1(a): CS occurs for ε ≥ 0.5. The density of
the orbits and the positive λ indicate that
the CS states are chaotic.

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Collective metrics for α = 3
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4.1(b): For range of interactions α ≥ 1, the
synchronous schemes do not have CS states,
regardless ε.

Figure 4.1: Collective metrics for α = 0 and α = 3. The red dots, representing
ht, correspond to 200 consecutive values after the transient t0.

In Figure 4.1(a), corresponding to fixed α = 0, complete synchronization
(σ = 0), occurs for ε ≥ 0.5, and in Figure 4.1(b), corresponding to fixed α = 3,
complete synchronization does not occur for any value of the parameter ε
(σ is always positive). This is because complete synchronization is limited in
the SPD model by the range of interactions, that needs to be long enough.
Moreover, the positive Lyapunov exponent in the CS region, indicates chaos.
All these results from simulations are in total agreement with the theoretical
prediction obtained in the previous chapter, in equation (3-17) and Figure 3.4.

Considering the values of σ and λ, in figure 4.1(a), we can distinct three
regions.

– Region I: σ and λ positive.

– Region II: σ positive and λ negative.

– Region III: σ = 0 and λ positive.

Region I is characterized by no collective behavior, due to values of ε close
to 0, which makes the coupling too weak to produce a pattern. Region II is
characterized by ordered states, as indicated by a negative λ, but no CS occurs
in that region as is indicated by a positive σ. Region III corresponds to CS
where σ = 0. In this case, λ is positive, indicating that CS states are chaotic.
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The values of σ and λ are indicators of certain types of underlying
dynamics, but it is the average h that shows the inner structure of the orbits.
In Figure 4.1(a) for example, in Region II, λ < 0 indicates that those states
have periodic orbits but it is h that shows the inner structure of the orbit, with
more detail.

Now we look at these metrics in the whole parameter space (α, ε).

CS frontier and CS states
CS states

CS frontier
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4.2(a): The red line corresponds to the theo-
retical frontier given by equation (3-17) and
the dots to the CS states with σ ≤ 10−14

obtained by numerical simulations.

Values of σ for SPD and CS frontier
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 0.35

4.2(b): The values of σ in (α, ε) show four
different regions. The CS states are shown
in white and the theoretical frontier in blue.

Figure 4.2: CS states, frontier and σ for the SPD model.

In Figure 4.2(a), the line corresponds to the theoretical frontier obtained
in equation (3-17) and the dots correspond to results of simulations with
σ ≤ 10−14. The states with CS are below the curve as was predicted in the
previous chapter.

In Figure 4.2(b), the average value of σ for each case (α, ε) is shown.
This heatmap has four distinctive regions. For ε < 0.1, maps are almost
uncoupled, then σ is high (red region). In the intermediate range 0.1 ≤ ε ≤ 0.4,
the standard deviation σ tends to a fixed value different from zero (σ =
0.223±0.06) (yellow region). Figure 4.1(b) is an example of this type of states.
For strong coupling and not too long range (green region), the trajectories of
individual maps are very close but synchronization is not complete. For strong
coupling and sufficiently long range interactions, complete synchronization
occurs (white region) and orbits are chaotic. Examples of these orbits can
be found in the Appendix A.
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The results in parameter space for λ.

States with negative Lyapunov exponent for SPD
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4.3(a): Simulations show two regions where
λ < 0, associated with regular orbits.
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4.3(b): Values of λ in the whole (α,ε) space.
As was predicted, the CS states have chaotic
orbits, indicated by λ > 0.

Figure 4.3: The Lyapunov exponent for the SPD model.

In Figure 4.3(a), the region where λ < 0 is located approximately in
0.2 ≤ ε ≤ 0.4. These states correspond to regular orbits, although the system
is not completely synchronized. In Figure 4.3(b), the higher values of λ coincide
with the region of CS shown in Figure 4.2 and predicted in the previous chapter.
This is because in the SPD model, every state that is completely synchronized
is chaotic.
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4.4
Results for the Synchronous Advective Diffusive model

For the SAD model, two illustrative examples of the collective metrics,
for α = 0 are shown below.
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4.4(a): For α = 0 and γ = 0.1, CS occurs
for ε ≥ 0.51. The density of the orbits and
the positive λ indicate that the CS states
are chaotic.
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4.4(b): For α = 0 and γ = 0.4, CS occurs
for ε ≥ 0.57.

Figure 4.4: Collective metrics h, σ and λ for the SAD model.

In Figure 4.4 we can see that for α = 0, the SAD model has CS states. This
region of complete chaotic synchronization is indicated by σ = 0, λ > 0 and
dense orbits, in the sense that that with more iterations they will fill up the
interval completely [22]. We also notice that increasing the contribution of
advection, from γ = 0.1 in (a) to γ = 0.4 in (b), reduces the domain where
σ = 0 without changing the type of orbits that completely synchronize. Both
results were previously founded in section 3.2.
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Figure 4.5: CS states (dots) and theoretical frontier (red line) for two γ values
of the SAD model show the reduction of the CSR.

In Figure 4.5 CS states from the simulation and the corresponding theoretical
frontier are shown together. In (a), for γ = 0.2 the CSR is similar to the one
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founded for the SPD model. In (b), for γ = 0.7 the CSR has been reduced to
a small fraction of the original. This indicates that increasing γ reduces the
number CS states, in concordance with what we found in section 3.2. This
reduction process continues up to a critical value of γc ≈ 0.792 that we found
in simulations as a limit for the existence of the CSR. For γ > 0.792, the
system does not have CS states, as we already found in section 3.2.

Given a point in the space (ε, α) within the CSR in the absence of
advection (γ = 0), CS is conserved up to a critical value γc. Beyond that value,
the effect of advection is to progressively separate or spread out the individual
trajectories, as illustrated in Figure 4.6. To illustrate this phenomenon, we
take individual trajectories from two cases of the SAD model. The individual
maps are: i ∈ [1, 30, 40, 60, 70, 90, 100, 150, 170, 180, 190, 201]. Starting with
the longtime state for (α, ε) = (0.7, 0.98), which is completely synchronized
without advection, we increase the value of γ to put into evidence the effect,
which is weak but visible for γ > 0.4 > γc.

10179 10184 10189 10194 10199
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

O
rb
its

4.6(a): When γ = 0.4 the spread out is
observable and the CS state has been lost.
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4.6(b): When γ = 0.8 the spread becomes
larger.

Figure 4.6: Effect of advection. For each case, the same 12 individual trajecto-
ries, for 20 iterations after the transient time, are shown.

Figure 4.7 shows the heatmaps of σ and the largest Lyapunov exponents
in the plane (ε, α). In both heatmaps, the region ε < 0.1 is forbidden (ε ≥ γ).
This cuts off the red zone of σ that appears in the SPD model in Figure 4.2(b).
The white zone in Figure 4.7(a), where CS occur, will decrease with advection
as we predicted in section 3.2. As for the Figure 4.7(b), increasing γ will reduce
the red zone associated with completely synchronized chaotic states. It will also
reduce the number of states with negative Lyapunov exponent (NLE).
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Deviation for γ = 0.1
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4.7(a): Average value of σ for SAD model
with γ = 0.1

Lyapunov exponent at γ = 0.1
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4.7(b): Average value of λ for SAD model
with γ = 0.1

Figure 4.7: The heatmaps show average values in the parameter space. For low
values of advection, they resemble those for SPD model.

In Figure 4.8(a), for γ = 0.1, the upper zone in Figure 4.3(a) has
completely disappeared and the lower region has been reduced. This shows
the effect of γ over NLE states. Now, when we set γ = 0.3, as in Figure 4.8(b),
the region becomes even smaller. At γ = 0.4 there are no points with negative
λ in the whole parameter space. For γ = 0.5 a new small region appears around
ε = 0.5 and start moving to the right with increasing γ. Complementary results
can be found in the Appendix B.

Negative Lyapunov at γ = 0.1
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4.8(a): γ = 0.1

Negative Lyapunov at γ = 0.3
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4.8(b): γ = 0.3

Figure 4.8: Simulations show that increasing γ reduce the number of states
with λ < 0.

We can observe these effects over the individual trajectories. To do so,
we use the same trajectories as before. Starting at (α, ε) = (0, 0.41) that is
characterized by a NLE, we increase the value of γ.
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In Figure 4.9 we can see that the effect is similar with respect to that
discussed above for CS. This shows a closer look to the global behavior evinced
in sections 3.2 and 4.4.
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4.9(a): When γ = 0.1 the trajectories start
to spread out.
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4.9(b): When γ = 0.3 the state is not longer
characterized by a NLE.

Figure 4.9: Effect of advection over a state with negative Lyapunov exponent.
For each case, the same 12 individual trajectories, for 20 iterations after the
transient time, are shown.

Furthermore, from this data, we can observe that the effect of the
advection is incremental. For instance, the CSR does not disappear abruptly
at some level of advection it shrinks progressively. The same occurs with the
NLE states.

4.5
Results for the Delayed Purely Diffusive model

From the previous chapter, we expect a change in the dynamics once we
include delay. Two examples of the results for the collective metrics, for two
different values of the contribution of the delay, are shown below.
In Figure 4.10 the feature that stands out is the change in the CS states orbits.
As found in section 3.3, the synchronized states are not necessarily chaotic. In
fact, in (a), we have a mixture of different types of orbits in the interval where
σ = 0. Even more, none of those orbits is chaotic. Now, in (b), when β = 0.8,
the possibility of CS states (σ = 0) which are chaotic (λ > 0), has reappeared.

The comparison between Figure 4.10(a) with Figures 4.1 and 4.4 puts
into evidence new features of the model with delay. In (a), the system is able
to synchronize with weaker coupling, at ε = 0.42. Also in (a) there are 3 regions
where λ < 0 and in those intervals, h shows periodic windows. For (b), in the
large interval where λ < 0, there is an orbit of period 1 for ε ∈ [0.51, 0.62],
followed by a window of period 3.
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4.10(a): α = 0, β = 0.1
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4.10(b): α = 0, β = 0.8

Figure 4.10: Collective metrics h, σ and λ at α = 0 for the DPD model.
Simulations show that delay creates new types of orbits and change the CS
states.

Simulations also show that the delayed scheme favors completely synchro-
nized states, in comparison with the synchronous scheme, as was predicted in
section 3.3 and depicted in Figure 3.9. Now, if we consider only the delayed
scheme, the effect of increasing values of β can be divided into two intervals.
In the interval 0 ≤ β ≤ 0.5, the CSR becomes larger with increasing β. From
there, increasing β shrinks the CSR. Even more, for ε ≥ 0.8 a new region of
CS emerges in the interval ε ∈ [0.15, 0.2], as shown in Figure 4.11(b). This was
not predicted in section 3.3 because these CS state are not associated with the
fixed point x∗ = 3/4. All these results are coherent with those in [21].
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4.11(a): For β = 0.25 the CSR is clearly
larger than the CSR for the SPD model.
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4.11(b): For β = 1 the CSR is also larger
that the one for the SPD model.

Figure 4.11: Complete synchronization states for DPD model.

The delay displays similar effect in the states whose Lyapunov exponent
is negative, as can be seen in Figure 4.12.
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Negative LE for β = 0.25
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4.12(a): Small delay favors states with
negative λ.

Negative LE for β = 1.0
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4.12(b): With large β the number of NLE
states decreases.

Figure 4.12: Negative Lyapunov exponent for the DPD model.

In Figure 4.12, the NLE states obtained from simulations are shown. The
results indicate that the number of this type of states increases up to a β = 0.4
and then, with larger delay, the number falls, in a way, showing a similar trend
as the CS states. The difference here is that the value of β is not the same.
For CS states, is β = 0.5, while for NLE states is β = 0.4.

One distinctive feature that appears with the inclusion of delay is the
emergence of regular orbits. This starts with a cascade of orbits of period 2k,
from right (ε = 1) to the left (ε = 0), as illustrated in figure 4.13.
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4.13(a): The dots correspond to the CS
states. Inside the solid lines, orbits of period
1 are completely synchronized.
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4.13(b): The value of h show the type of
orbit that are contained in the CSR in (a).

Figure 4.13: For β = 0.4, α = 0 the CS states, frontiers and collective metrics.

A second distinctive feature is that there is complete synchronization
of these regular orbits. This type of synchronization did not emerge in the
synchronous scheme, where the CS states are only chaotic. In Figure 4.13(a),
the CS states are composed only by regular orbits. The CS states of period 1
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can be identified because they are located between the solid lines that represent
the inequalities found in section 3.3. In panel (b), the value of h, for α = 0,
shows these regular orbits more clearly. We also see that in that region, σ = 0,
i.e., the collective states are CS.

As a complementary example, we look at a higher value of the contribu-
tion of delay, β = 1. In Figure 4.14, regular and chaotic orbits coexist in the
CSR. In (a), the CSR is composed by two separated zones. In (b), the value
of h indicates the type of orbits that completely synchronize, where σ = 0. As
we can see, when β is large enough, chaotic orbits emerge for ε > 0.9.
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4.14(a): For β large enough, the CSR is
composed by two separated regions.
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4.14(b): The value of h show that the two
CSR have contain regular orbits, but the one
on the right can also have chaotic CS states.

Figure 4.14: For β = 1 the CS states and the collective metrics. In this case
α = 0.

As a result it is claimed that delay favors the formation of regular orbits
and completely synchronized states. Therefore, we will have much more states
with negative Lyapunov exponents.
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Besides the CS and NLE states, other features also change in comparison
with the models with synchronous update scheme. This can be seen through
heatmaps.

Deviation for β = 0.4

∞

 0  0.2  0.4  0.6  0.8  1

ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

4.15(a): Average values of σ for β = 0.4

LE for β = 0.4
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4.15(b): Average values of λ for β = 0.4

Figure 4.15: Deviation and Lyapunov exponent heatmaps for the DPD model
when β = 0.4.

Figure 4.15(a), when compared with Figure 4.2(b), shows that the red
region, where ε < 0.1 does not change due to delay. All the other regions of the
parameter space are altered. CS states, in white, now also occupy the short
range interactions zone. Here, the green and yellow regions are more mixed
in comparison with the SPD model. Now if we compare Figure 4.15(b) and
4.3(b), we can immediately see that we have an extended region of regular
orbits, approximately starting in ε ≥ 0.2, and also that some of these orbits
coincide with the CS states shown in 4.15(a). An example of these orbits, was
found in section 3.3. An example from simulations is shown in Fig. 4.16.
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4.16(a): CS and NLE states together
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4.16(b): β = 1 at α = 0.5

Figure 4.16: For β = 1, the overlap of regular and CS states.

Complementary results can be found in the Appendix C.

DBD
PUC-Rio - Certificação Digital Nº 1521979/CA



Chapter 4. Numerical Results 51

4.6
Results for the Delayed Advective Diffusive model

In this model, as well as in the SAD model, the coupling parameter ε can
not be smaller than the advection parameter γ.
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4.17(a): α = 0,β = 0.1,γ = 0.2
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4.17(b): α = 0,β = 0.8,γ = 0.3

Figure 4.17: The Collective metrics h, σ and λ for two illustrative examples in
the DAD model.

When we compare the metrics in Figure 4.17 with those in Figure 4.10, it
is possible to evidence the effects of advection in presence of delay. In (a), the
minimal value of ε for which the system synchronizes has moved to ε = 0.44.
For the same parameter, in (b), we have a shift to ε = 0.55. Moreover, in
(a), the negative peak located around ε = 0.36 has moved upwards, and the
average h shows a new periodic window near ε = 0.42.

CS points for β = 0.1

∞

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

4.18(a): DPD case with β = 0.1 and γ = 0

CS points γ = 0.4 and β = 0.1
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4.18(b): DAD case with β = 0.1 and
γ = 0.4

Figure 4.18: The effect of advection when the delay parameter is fixed.

Now we focus on CS states. Figure 4.18 shows that the CS region
deceases only slightly and remains almost unchanged, in size and location,
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with increasing advection. From the previous section we know that CS states
grow with delay and advection will reduce the CS states. The reduction due to
advection is almost negligible and the net effect is similar to the DPD model.

For stronger advection, γ > 0.5, the (α, ε)-plane will be cut due to the
restriction over ε. In this sense, the CS region will decrease with advection, but
mostly as a result of a change in the parameters space. When both parameters
are above 0.5, the observed combined effect is a decreasing number of CS states.
The exception seems to be β = 0.5, where the completely synchronized states
remains unchanged for γ ≤ 0.5.

Then, we can put forward the idea that delay overcomes advection.
Neglecting some small deviation, the effect of advection over synchronized
states, is weak. This is reflected in the number of CS states and some small
deviation from the DPD model in the collective metrics.
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4.19(a): Lyapunov exponent

Deviation for γ = 0.1 and β = 1.0
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4.19(b): Deviation

Figure 4.19: Heatmaps for the DAD model.

The effect of the advection in other points is also dominated by the delay.
For example, the deviation maintains almost the same portrait as the DPD
model as shown in Figure 4.19.

As we know from the previous section, the effect of β on the NLE region
has two phases. In both of them, due to the extension of the region where the
Lyapunov exponent is negative, the advection effect comes essentially from
cutting the plane.
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Negative LE for β = 0.7
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4.20(a): DPD case with β = 0.7

Negative LE γ = 0.2 and β = 0.7
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4.20(b): DAD case with β = 0.7 and
γ = 0.2

Figure 4.20: Short-range sensitivity to advection.

As an example, Figure 4.20 shows that points in the short-range region
change their λ first. The changes that advection produces in these type of
states are moderate compared with the synchronous version, where the NLE
completely disappears for γ = 0.4.

We can see that when advection is introduced in the delayed model,
the effects over CS and negative Lyapunov exponent states are in the same
direction as in the model without delay, but in this case, due to the delay, they
are practically hidden. Complementary results can be found in the Appendix
D.

We can visualize the combined effect of advection and delay comparing
the collective metrics for some illustrative examples.
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Figure 4.21: The top plot shows the result without advection. The advection is
increased downwards. This shows that the type of orbits are almost the same
as the DPD case. The advection have a little (ε = 0.4) or no effect (ε > 0.6)
in presence of delay. In this case, α = 0.
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In Figure 4.21, 200 values of h after the transient time t0 are shown
for each ε. The advection has a moderate effect over the orbits and primarily
reduces the interval in ε.

For instance, the orbits around ε = 0.4, when γ = 0, have a definite
period (top panel). When γ is increased, for example γ = 0.4, they have a much
larger period (mid panel). This is due to the effect of advection over individual
trajectories of states with NLE. The advection destroys regular orbits. For
orbits where the coupling is strong enough, ε ≥ 0.6, there is little or no change
with advection.
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Figure 4.22: Effect of γ on the collective metrics. In this case α = 0.

For β > 0.25, due to the emergence of the stable interval for the fixed
point x∗, the advection does not change the orbits in this region and only
reduces the domain. This is illustrated in Figure 4.22.

From the observed isolated effect of advection and delay, and the results
of the DAD model, we claim that, in general, the effects of delay overcome
those of advection. It is the restriction γ ≤ ε that mainly modifies the results
of the DAD model when compared with the DPD model.

This can be explained by the characteristics of the advection compared
with delay. We saw that the effect is weak and progressive. Delay, on the other
hand, changes the CSR, the type of orbits and the states with NLE. Moreover,
it allows the emergence of CS states even in the short-range case (α → ∞).
Also important is to recall that the advective term is asymmetric, therefore
when the CS state is reached in a fixed point, that term becomes equal to zero.
Orbits and collective metrics means that they are unaffected by γ. This is not
the case when delay is included in the scheme, as we saw in section 4.5. More
examples can be found in the Appendix E.
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5
Conclusions and Perspectives

5.1
Conclusions

We first revisited CMLs with diffusive coupling (SPD and DPD) models
that have been studied in the literature before [20, 21, 6, 7, 26]. Then, we
approached new cases, that as far as we know, have not been studied before,
namely the CMLS with inclusion of advection (SAD and DAD) modulated
by parameter γ. The SAD model is studied in [16–19] but from a different
perspective and only for first neighbors range of interactions.

As a control, we verified that in the limit γ → 0, the results previously
known for the models without advection are recovered.

We focused on complete synchronization (CS). In the synchronous cases
(without delay, that is β = 0), CS occurs in chaotic trajectories. We delimited
analytically the region in parameter space where CS occurs (CSR), by means
of the study of transversal stability. Numerical simulation and verifications
were also performed.

In the cases with delay (that is, β > 0), CS occurs in regular trajectories.
In this case, we obtained analytically the frontier of domains only for the
case of period 1 orbits. Moreover, delays facilitate CS that can occur even for
short-range interactions.

In all cases advection is prejudicial for CS stability. Furthermore, we also
analyzed the effects of advection on regular trajectories (even if the collective
state is not synchronized).

We wish to emphasize three evinced phenomena. The first, is that
advection destroys regular orbits (λ < 0) and completely synchronized states
(σ = 0). This is done by spreading out individual trajectories as shown in
Chapter 4. This separation makes σ 6= 0 and λ less negative but not necessarily
positive.
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5.1(a): Advection on CS states.
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5.1(b): Advection on NLE states.

Figure 5.1: Isolated effect of advection in the SAD model.

The second idea is that the delay favors CS and NLE. This is not
monotonic in β. For instance, this is due to the stability region of the CS
states around the fixed point.
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5.2(a): CSR states with β = 0.3
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5.2(b): CSR shrinks for β > 0.5

Figure 5.2: The effect of delay on CS states.

Finally, when advection and delay are together in the DAD model, delay
dominates the dynamics, hindering the effects of advection described above.

5.2
Perspectives

An immediate perspective of the present work is to extend the studies
done for the cases with delay to CS orbits other than period 1 trajectories.

Another perspective is to identify and classify phase synchronization.
In this line a new collective metric was initially developed to measure the
Complete Phase Synchronization, CPS.

The idea is to look for harmonious collective coherence without consid-
ering phase shifts. We have already done preliminary work in this direction.
The new metric is based on [29–32]. In [31, 32], for two-dimensional CMLs, the
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authors define a new variable as the difference between two consecutive states
of the system. In [29], also for a two-dimensional CML, the authors define an
instantaneous order parameter as the average of the sign of each map. This
last idea is applied in [30] for a one-dimensional CML.

We consider an individual map and the difference between its current
state, xit+1, and the previous one, xit. This can be defined as z.

zit+1 = xit+1 − xit . (5-1)
Positive values are associated with increasing slope and negative ones with
decreasing slope. The problem with z is the scale. Two maps can have different
values of z, even if they are moving in-phase. To overcome this issue we use
the sign function and define a new variable w.

wit+1 = sgn(zit+1) . (5-2)
This gives us a +1 every time that an individual map moves up and a −1 when
it moves down. Then, if two maps, k and j, are in-phase, meaning that they
move at the same time up or down, wkt = wjt . If so, regardless the actual value
of zkt and zjt , the multiplication of the components of w will be 1. So, we can
calculate this metric for each map, for each time step, taking as reference any
individual trajectory, that is

φit = wit × w1
t . (5-3)

Finally we can take the spatial average to look at the evolution of this
metric in the parameter space, obtaining the collective quantity

φt = 1
N − 1

N−1∑
i=1

φtz
i. (5-4)

Like with the other metrics, we take the temporal average over the last
200 iterations. It is important to notice that φt differs from those described
in [5], because they are conceived for master-slave systems, where the phase
synchronization is measured against the master system.

We tested φt with two models: SPD and SAD.
In terms of the complete phase synchronization metric, CS states have

φ equal to 1. When the coupling is low ε ≈ 0, the system is a collection of
uncoupled chaotic logistic maps that should not have a preferred direction at
any time. Furthermore, we could expect that at any step, roughly, half of the
systems will go up and the other half down, therefore we should get an average
value of φ ≈ 0. The states with CPS match with the CS in this model.
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In-phase points for SPD
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5.3(a): Points where φ = 1

Phase heatmap for SPD
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5.3(b): Heatmap for φ

Figure 5.3: CPS appears in the CS zone.

In the purely diffusive model, the states with φ = 1 coincide with the
CSR. In the model with advection, they do not necessarily are the same, and
depend upon the value of the advection parameter. For example, for γ = 0.5
they do not match.
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5.4(a): Heatmap of φ, γ = 0.2

CPS states for SAD γ = 0.5
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5.4(b): φ =1, γ = 0.5

Figure 5.4: φ becomes homogeneous with increasing advection.

For this model, φt turns out to be quite homogeneous and for that reason,
the heatmap is not very useful. Nevertheless, in the same way that the deviation
identifies states with σ = 0, this metric can be specialized for φ = 1.
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Appendix A: Numerical results for the SPD model

Individual trajectories, for 12 maps from N = 201, are shown
in Figures A.1 and A.2 in order to illustrate the types of orbits
mentioned in Figure 4.2(b). The maps in each case are the same:
[1, 30, 40, 60, 70, 90, 100, 150, 170, 180, 190, 201].
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A.1(b): (α, ε) = (0.5, 0.6)

Figure A.1: The green zone of Figure 4.2(b) has non periodic clusters and quasi
synchronized states.
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A.2(a): Yellow zone (α, ε) = (1.5, 0.8)
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A.2(b): White zone (α, ε) = (0.3, 0.8)

Figure A.2: Yellow and white zones of Figure 4.2(b).

Examples for the red zone are omitted because trajectories are very
similar to a set of uncoupled maps.
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Figure B.1: Collective metrics h, σ and λ for the SAD model at α = 0.
Advection causes the reduction of the synchronization domain. Each panel
correspond to a different value of γ.

DBD
PUC-Rio - Certificação Digital Nº 1521979/CA



Appendix B. Appendix B: Numerical results for the SAD model 61

CSR and frontier for γ = 0.1
CS points

CS Frontier

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

Deviation for γ = 0.1
inputfile2 using 3:2:4

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CSR and frontier for γ = 0.3
CS points

CS Frontier

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

Deviation for γ = 0.3
inputfile2 using 3:2:4

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CSR and frontier for γ = 0.5
CS points

CS Frontier

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

Deviation for γ = 0.5
inputfile2 using 3:2:4

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CSR and frontier for γ = 0.7
CS points

CS Frontier

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

Deviation for γ = 0.7

 0  0.2  0.4  0.6  0.8  1
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Figure B.2: In the left column the theoretical frontier and the complete
synchronization region (CSR) from simulations. The effect of advection, from
γ = 0.1 to 0.7 is to reduce the CSR. In the right column the average value for
σ in the parameter space is shown.
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Figure B.3: Lyapunov exponent values for the SAD model. In the left column,
the states with negative Lyapunov exponent (NLE) which are modified by the
effect of advection: advection destruct this type of states. In the right column,
the average value for λ in the parameter space is shown.

DBD
PUC-Rio - Certificação Digital Nº 1521979/CA



C
Appendix C: Numerical results for the DPD model

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.10 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.60 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.20 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.70 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.30 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.80 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 0.50 - γ = 0.00

h
σ
λ

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

β = 1.00 - γ = 0.00

h
σ
λ

Figure C.1: Collective metrics h, σ and λ in the DPD model for α = 0. The
delay favors synchronization. Large enough β makes chaotic orbits emerge, as
shown in the last panel in the right column.
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Figure C.2: In the left column, CS states for different values of β are shown. In
all cases, the delay favors the synchronization. In the right column, the average
value of σ for different values of β is shown in the parameter space.
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Figure C.3: Lyapunov exponent values for the DPD model. In the left column,
states with negative Lyapunov exponent are modified by the effect of delay. In
the right column the average value for λ is shown for different values of β, in
the parameter space.
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Figure D.1: Collective metrics h, σ and λ in the DAD model for α = 0. In the
left column for β = 0.1, γ goes from 0.1 (upper panel) to 0.4 (lower panel).
In the right column for β = 0.3, γ goes from 0.1 (upper panel) to 0.4 (lower
panel). The advection reduces the CS domain.
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Figure D.2: Collective metrics h, σ and λ in the DAD model for α = 0. In the
left column for β = 0.7, γ goes from 0.1 (upper panel) to 0.4 (lower panel).
In the right column for β = 0.9, γ goes from 0.1 (upper panel) to 0.4 (lower
panel). The advection reduces the CS domain.
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Figure D.3: CS states in the DAD model. In the left column for β = 0.1, γ goes
from 0.1 (upper panel) to 0.8 (lower panel). In the right column for β = 0.3,
γ goes from 0.1 (upper panel) to 0.8 (lower panel). The advection reduces the
CS domain while the delay favor CS states.
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Figure D.4: CS states in the DAD model. In the left column for β = 0.7, γ goes
from 0.1 (upper panel) to 0.8 (lower panel). In the right column for β = 0.9,
γ goes from 0.1 (upper panel) to 0.8 (lower panel). The advection reduces the
CS domain while the delay favor CS states.
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Negative LE γ = 0.1 and β = 0.1
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Figure D.5: Negative Lyapunov exponent in the DAD model. In the left column
for β = 0.1, γ goes from 0.1 (upper panel) to 0.8 (lower panel). In the right
column for β = 0.3, γ goes from 0.1 (upper panel) to 0.8 (lower panel). The
advection reduces the number of this type of states.
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Negative LE γ = 0.1 and β = 0.7
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Figure D.6: Negative Lyapunov exponent in the DAD model. In the left column
for β = 0.7, γ goes from 0.1 (upper panel) to 0.8 (lower panel). In the right
column for β = 0.9, γ goes from 0.1 (upper panel) to 0.8 (lower panel). The
advection reduces the number of this type of states.

DBD
PUC-Rio - Certificação Digital Nº 1521979/CA



E
Appendix E: Other numerical results

0.0

0.5

1.0

γ=
0

Average for β = 0.2

0.0

0.5

1.0

γ=
0.
1

0.0

0.5

1.0

γ=
0.
2

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.0

0.5

1.0

γ=
0.
3

−1

0

1

γ=
0

σ and λ for β = 0.2

−1

0

1

γ=
0.
1

0.0 0.2 0.4 0.6 0.8 1.0
ε

−1

0

1
γ=

0.
3

σ
λ

Figure E.1: For β = 0.2, in the DAD model, the effect of γ in the collective
metrics is shown. When α = 50, the advection only reduce the domain in ε.
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Figure E.2: The same phenomenon described above occurs for β = 0.4. This
means that the effect of the range of interactions is stronger than the effect of
delay and advection.

The effect of advection for α→∞ over the complete synchronized states
and those with negative Lyapunov exponent (NLE) is the similar. In Figure
E.1 there is no effect; in those states we do not have CS nor NLE. In Figure
E.2, over NLE states, makes their λ less negative. There is no effect over CS
states because they belong to the stability region of the fixed point.
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